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A model of $ne interplanetary aust  ensemble is derived. wnicn explains 

It is shown many of the inconsistencies in the zodiacal l i g h t  observations. 

t h a t  the number density of  par t ic les  is nearly independent of distance from 

the sun i n  the region between Mercury and Mars but is possibly zero beyond 

Mars. 

dust  change8 s l igh t ly  with time and distance from the sun. 

shown tha t  the ensemble consists of par t ic les  with r a d i i  l e s s  than 1.1 micron. 

A few larger par t ic les  cer ta inly e x i s t  but they do not a f f e c t  the zodiacal 

l i g h t ,  

Further, it is shown tha t  the s i ze  dis t r ibut ion of the  interplanetary 

Finally, it is 

The electron density 5n the region beyond Mercury is arbitrary.  
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1. ~ ! ! ' ~ ~ O D i j :  TI(:@ 

All previous analysts of the zodiacal l i g h t  observations have made 

two d ras t i c  assumptions concerning the nature of the interplanetary dust 

ensemble. 

planetary dust is the same a t  a l l  points throughout the solar system. The 

second is t h a t  the number density of  the par t ic les  a t  a given distance, r, 

from the sun can be represented by a monotonic function of r. 

t ions  have been necessary in order t o  simplify the scattering equations 

which relate the measured brightness and polarization of the zodiacal l i g h t  

t o  the  theoret ical  functions which describe the opt ica l  properties of smaU 

par t i c l e s  (Mie, 1908 and Bornholf, 1964). 

The f i rs t  assumption is t h a t  the s i ze  dis t r ibut ion of the inter- 

These assumpl 

Both assumptions are embodied i n  the mathematical expression f o r  the 

number density of the interplanetary dust used i n  the detailed analysis of 

Blackwell/Inghamls and Weinberg's observations by Giese/Siedeabpf ~ (196$), 

Giese (1963), and L i t t l e  e t  al. (1965). The expression is** 

It was lnitially used by Allen (1947) and Van de H u l s t  (1947) t o  demonstrate 

the necessity of considering the  diffract ion component of the l i g h t  scat- 

tered by the dust. It has no fundamental sQnificance. 

The model of the interplanetary dust ensemble corresponding to  

equation (1) can be rationalized t o  f i t  the models derived from dynamic 

considerations (see, for example, Southworth, 1964; Harwit, 1963; Wyatt/ 

Whipple, 1950), but  any number of more complicated models are possible. 
* N(r,a) is  the number density of par t ic les  wi th  radius, a, a t  distance r 
f romthe  m. ao, p and 0 ere constants decbed  from the observa~3.ons. 
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F Q ~  the, Wariner E &&a iiidicate that the wmher densiTt;. xiax be an 

osc i l la t ing  function of r (Alexander e t  al., 196s). 

models seem reasonable on the basis of observations supporting the hypothesis 

of an ear th  centered b e l t  (Divari, 1964). 

f o r  observed meteor showers n o r  does it seem reasonable i n  view of the f a c t  

t h a t  forces due t o  radiation pressure and the Poynting-Robertson ef fec t  are 

very sensi t ive t o  par t ic le  s i z e  (Wyatt/Whipple, 1950; Beard, 1959). 

Even more complicated 

Equation (1)  does not account 

There is a t h k d  assumption usually made t h a t  the interplanetary dust 

ensemble does not contain a s ignif icant  number of submicron s i ze  particles.  

Par t ic les  with r a d i i  l e s s  than 0.1 t o  0.8 microns (depending on the absorp- 

t i on  coeff ic ient  and mass density) a re  supposedly blown out of the so l a r  

system by tihe sun's photon and rc3orpusatiLar radiation. However, as pointed 

out by Shapiro e t  al. (1966), Belton (1966), and others, the calculation of 

the r e su l t an t  forces  on an interplanetary pa r t i c l e  is not so simple as some 

of us pretend. 

radiat ion pressure. 

continual supply of submicron particles.  For example, the fluffy par t i c l e s  

of Soberman and Hemenway (1961) can be pulled toward the sun by the Poynting-. 

Robertson e f f ec t  and broken up (Giese, 1963) possibly by charge e f fec ts  

induced as they approach the region of the electron corona, or  converted t o  

smal l  par t i c l e s  by surf ace evaporation (Belton, 1966) . Fesenkov (1963) 

alludes t o  the idea t h a t  there exis t  many asteroid-like bodies orbi t ing 

throughout the so la r  system. 

r a d i i  smaller than those s e t  by radiation pressure. 

t h a t  comets are  a source of submicron par t i c l e s  has been questioned 

They mention several mechanisms which modify the e f f ec t s  of 

Also, there are several. possible sources which give a 

These could continually produce pa r t i c l e s  wi th  

Although the poss ib i l i t y  

7 
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( ~ o z ~ ~ G c r ~ ~ ,  196k), such pztic;eu ,rit A ' - -  L!?e d ? ' d l l a L l L e  ----Zl -Ll- I-lLIDCL --L-----J.:--- y e l - , l $ - l l l , >  of I;,?=& 

Arend-Roland and W K o s  (Donn e t  ai., 1967). 

Another objection to  submicron interplanetary dust is  based on the 

argument t h a t  such par t ic les  are incompatible with the observed color of the 

F corona (Elsasser, 1965; Southworth, 1964), However, there is no reason t o  

assume t h a t  the s i ze  dis t r ibut ion of dust close t o  the sun is the same as  

t h a t  i n  the zodiacal light.* 

Many investigators assume tha t  the zodiacal light would be much bluer 

than sunl5ght if the interplanetary ensemble contained large numbers of sub- 

micron particles.  Tanabe (1967) and Karyagina (1961) have shown t h a t  the 

zodiacal l i g h t  is bluer than sunlight a t  elongations l 5 O - 4 O o  and 40°-500, 

respectively. 

interplanetary dust ensemble is compatible with the i r  spec t ra l  measurements. 

As we w f f l  show la te r ,  a submicron pa r t i c l e  model of the 

Having cast  dispersions on a l l  the usual assumptions used f o r  analysis 

of the zodiacal l i g h t  observations, thereby adding more confusion to an 

already confusing problem, we now proceed to  present a model of the inter-  

planetary dust which is j u s t  as  arbitrary. We do t h i s  f o r  two reasons: 

first, we want t o  t e s t  the  uniqueness of previous analytic f i t s  t o  the 

zodiacal l i g h t  observations and second, we w a n t  to demonstrate that the 

apparent disagreement among various observers (as  reviewed by Weinberg, 1964, 

and Gillett,  1966) may not be as serious as w e  all thought. We s h a l l  present 

a model of the interplanetary dust which f i t s  most of the available observa- 

t ions . 
I n  fac t ,  l a rge  par t ic les  a re  continually being l'pulled*l into smaller and * 

smal-ler volume around the sun by the Poynting-Robertson forces. 
particles are  not. 

Submicron 
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2. A BELT MODEL OF THE INTERPLLWEX"EX'Y DUST EKXNEEE 

L e t  us a r b i t r a r i l y  separate the interplanetary space ( i n  the eclip- 

t i c )  into a system of be l t s ,  the boundry of each b e l t  coinciding with the 

o rb i t s  of the  planets as shown in figurn 1, 

b e l t  is populated wi th  par t ic les  having any s i z e  dis t r ibut ion a t  a l l ,  Le , ,  

we assume tha t  all p a r t i c l e  s izes  and refract ive indices ( r e a l  and complex) 

a re  possible and t h a t  the s i z e  distribution, nwnber density, and chemical 

carnporsition of par t ic les  i n  one b e l t  are completely independent of the 

same quantit ies i n  mother, We w i l l  assume f o r  now t h a t  the par t ic les  

are spherical, 

t h  bt us assume t h a t  the k 

Using such a nrodel, it is possible t o  deduce the s i z e  d is t r ibu t ion  

of particles in each b e l t  from the many rsbg3.e color observations of the 

zodiacal light. The inversion is based on the mathematical method of 

Powell and Daan (1967). Although the necessary inversions of the famil iar  

MtegraT equations (Giese, 1963; Van de Hulst, 19h7) are  accomplished 

through approximations, the results are  as  accurate as the Mie theory 

alluws, We point out t h a t  the method has been applied t o  observations of 

comet Arend-Roland and W o s  by Donn and Powell ( t o  be published) and the 

resu l t s  checked according t o  the  exact m e  theory by Remy-Battiau ( t o  be 

published). We f a d  that the par t ic les  i n  both comets were d ie l ec t r i c  - 
definitely not  i ron as Li l l e r  (1960) suggested. T h e  method has been 

checked further by reproducing the analytic r e su l t s  of Giese and Siedentopf 

(1962L 
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Figure 1. Be€t Xlistribution Map. The size distribution of particles in each belt as derived 
from the various zodiacal light observations are shown in figures 8-11. 
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Our method does not allow a d i r ec t  f i t  of the polarization function 

Bl - B2 

€Il i. B* 
P =  

a s  used In the review of observations by Weinberg (19a). Instead, we use 

the Delta parameter: 

A B - B2 PB3 1 

which is the difference between the brightnesses measured with e l e c t r i c  

vectors perpendicular and pa ra l l e l  t o  the scat ter ing plane, respectively. 

T b  del ta  parameter is also t h e  producf of the measured polarization P, 

and the measured brightness, B - B1 + B2. 3 
The del ta  parameter corresponds more closely t o  the quant i t ies  

actual ly  measured than does the polarization i n  the sense t h a t  the de l t a  

parameter i s  a combination of two separately measured variables, whereas 

the polarization is a combination of three. I n  th i s  regard we point out 

tbt +;he e-xprLmnta1 corrections f o r  the measured brightness, B,, are 

radical ly  different, than those fo r  the measured delta,  B1 - B2, and that 

the brightness is an absolute measurersent, whereas de l t a  is relative.  

2 

These factors  may lead t o  large discrepancies i n  various observations of 

the polarisation but small discrepancies i n  various observations of the 

del ta  parameter. For example, over-correction of the measured brightness, 

leads t o  a value f o r  the polarization, (B1 - B2)/B3, which i s  too  l o w  B39 
and vice versa. This correlation might be expected t o  show up i n  the 

observations. It does i n  a general  way. The polarization measured by 



Biacicweii/’ingham ana Eisasser 

brightness is higher (Weinberg, 1964) .  When one corrects the polarization 

measured by Blackwell/Ingham and Elsasser by the r a t i o  of t h e i r  brightness 

t o  Weinberg’s, the large discrepancies disappear. 

is not a s  simple as  the above discussion indicates. 

emphasize tha t  theoret ical  f i t s  t o  the de l ta  parameter are probably more 

realistic than fits t o  the polarization. A comparison of observations, 

A (  e), according t o  various representative observers i s  shown i n  the  bottom 

of figure 28. 

left-hand graph of f igure 2B. 

is much higher than Veiriuerg; s but tieinberg; s 

O f  course, the  correction 

On the other hand, we 

The corzwsponding Brightness observations a re  shown i n  the 
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2. 3 DDT,TCTIC?JS F2cg TBE C)BSsFT:!xTIC)>IS r,rS-j-JI$ SEyJ p7QT)k’T 

The observations of Weinberg (1964), Blackwell/Ingham (1961), Divari/ 

Asaad (1960), Robley (1962), and Behr/Siedentopf (1953) are  shown in figures 

3 t b u g h  7, respectively. 

shown superimposed on the observational curves. 

Weinbergt s and Bladcwell/Ingham~s curves exactly. 

and DivarUAsaad can be matched approximately w i t h i n  the experimental error. 

The theoret ical  curves from the  be l t  model are  

We have been able to match 

The observations of Robley 

Behr and Siedentopfts observations cannot be matched precisely unless one 

assumes t h a t  Venus sweeps out par t ic les  near its orbit .  

The observations shown in f igures  3 through 7 and the conclusions 

drawn therefrom are  representative of a l l  other available observations 

(Elsassq, 1958; Huruhata, 1951; Barbier, 1955; Smith, e t  al., 1965; Beggs 

e t  al., 1964; Walstencraft/Rose, 1967; and Gillett/Ney, 1966). 

analyzed the data of Peterson (1961) and Dufay (1925). 

We have not 

Peterson’s data do. 

not extend close enough to  the sun f o r  our purposes and Dufay’s measurements 

were made before there was suff ic ient  knowledge concerning atmospheric 

correct  ions. 

The s b e  dis t r ibut ion and re f rac t ive  indices of the particles in each 

b e l t  as der5ved independently from each of the observations a re  shuwn ;in 

figure 8 (Mercury-Venus), f lgure 9 (Venus-Earth), figure 10 (Earth), and 

f igure 11 (EmtbMars) . 
The characteristics of the interp1aneb.q dust as deduced f r o m  all 

zodiacal l i g h t  observations are  remarkably similar, A l l  observations indi- 

cate t h a t  the r a d i i  of the par t ic les  l i e  in the range 0.08 to 1.5 microns 

and t h a t  tbe decrease i n  nmaber density w i t h  increasing partJLcle s5ze is 
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- 0 - p ~  steep- 

s l i g h t  differences i n  the s i z e  and composition of the interplanetary par- 

t i c b s .  

T'ne Large d i f f e ~ e n c e s  in the observa t ions  car, bc e q l a k e d  by 

* 

In the region between Mercury and Venus (f igure 8), the observations 

of Weinberg, Blackwell/Ingham, and I)ivari/Asaad a l l  require the existence of 

i ron particles i n  addition to dielectr ics ,  

have radi i  less than 1 mfcron but more than 0.08+ 

density of iron particles is lower than t h a t  f o r  d i e l ec t r i c s  and t h a t  the 

.Iron particles s b e  is larger, 

Ingham and Behr/Siedentopf require the existenoe of a large number of very 

small par t ic les  with r a d i i  l e s s  than 0.Q - a t  l e a s t  a f ac to r  of 100 more 

than required by the other observerso The re f rac t ive  index of d i e l ec t r i c  

pa r t i c l e s  is  between m 5 lek and m = 1.8 f o r  all observers, 

Host of these iron pa r t i c l e s  

Notice tha t  the number 

Rotice also t ha t  the observations of Blackwell/ 

In the region between Venus and Earth the d i e l ec t r i c  par t ic les  

( l e k  5 m S 1.8) have r a d i i  0.08 S a s 0,3 mil=rons, Behr/Siedentopf, Divari/ 

Asaad, and Robley require a higher proportion of small par t i c l e s  than e i ther  

Weinberg o r  Blackwell/Ingham, 

par t ic les ,  

Weinberg and Blackwell/Ingham require i ron 

Again, these are larger and l e s s  nwerous than the  dielectr ics ,  

All observations also lead t o  similar conclusions concerning the 

nature of the dust near Earth's orbit. 

(1.4 5 m s 1.8) and very s m a l l  (0.08 t o  042 microns r ad i i ) ,  

observations require t h a t  par t ic les  near the Earth 's  o r b i t  (0,9 s r S 1.1 A.U,) 

The pa r t i c l e s  are  all die lec t r ics  

Weinberg's 

* Of course there is no way to determine whether or not electrons are present 
from analysis of single-color observations. Par t ic les  with r a d i i  l e s s  than 
0,08 micron sca t t e r  l i k e  electronse Thus, the number density of such par- 
t i c l e s  as plot ted i n  figures 8 through 11 may be multiplied by lo7 t o  1010 
fdephidhg 6ir s i ze)  to estimt'ke We equ%va&ent nuraber of electrons. 
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ilave ~ - j i g ~ l & ~ y  dflfeixeiii 5 ~ Z S  d i s t i e ibQt i cn  t h a ~  t h e s e  in :lie 'v'eii-fis-iath b e i t ,  

The slope (number density vs par t ic le  s ize)  is steeper than  previously e s t i -  

mated. For comparison we present our  r e su l t s  w i t h  previous estimates i n  

f igure  12. 

In  the region between Earth and Mars (f igure 11) w e  f i n d  again t h a t  

all pa r t i c l e s  are  d i e l ec t r i c  with r a d i i  i n  the range 0.08 t o  0.6. The s i z e  

d is t r ibu t ion  which f i t s  Robley's observations has the highest proportion of 

small part ic les .  The s i z e  dis t r ibut ions corresponding t o  the observations 

of Weinberg and EUackwell/Ihgham require the same narrow range of pa r t i c l e  

rad i i ,  0.1 S a 5 0.2, but  WeinbergIs number density is greater by a fac tor  

between 7 and 20. 

No par t ic les  are  required i n  the  space beyond Hars t o  explain the 

existing observations. 

of pa r t i c l e s  beyond Mars may be similar t o  those in t e r io r  t o  Mars, but the 

number density must be less by a t  l e a s t  a fac tor  of ten, 

On the other hand, the s i z e  and r a d i a l  dis t r ibut ion 

A s  can be seen by comparing f igures  8 through 11, the s ize  distribu- 

t i on  is roughly the same throughout the region from Mercury t o  Mars. 

F u r t h e m r e ,  the number density is  nearly independent of distance from the 

sun, The accuracy of these two statements can be judged from f igure  13 

where the s i ze  dis t r ibut ions derived from all observations i n  all be l t s  a re  

superimposed, 



Figure 12. Average Size Distribution Derived from the Belt Model (Powell & Woodson) 
Compared to Previous Estimates. 
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A unique model of the interplanetary dust ensemble can only be 

derived from "monochromaticr1 (1 

brightness and polarization a t  a l l  elongations 30° c g 160°. Such com- 

p l e t e  observations are not ye t  available. The va l id i ty  of our b e l t  model 

is, therefore, open t o  question since it was derived from single-color or 

wideband measurements. 

brightness of t h e  zodiacal l i g h t  a t  elongations 150 
wavelengths (43001, 53001, 60001) and Kasyagina (1961) has made r e l a t ive  

three color measurements a t  c = 4O0-5OO, 

50 I.), three-color observations of the 

However, Tanabe (1967) has measured the  absolute 

6 5 400 a t  three 

Thus, it is possible t o  t e s t  the va l id i ty  of t h e  b e l t  model i n  a 

preliminary manner by comparing the color of t he  zodiacal l i g h t  predicted 

from the b e l t  model t o  the  measurements of Tanabe and Karyagina a t  elonga- 

t ions  where the single color observations are i n  coincidence. I n  t h i s  

section we give the resu l t s  of such a cor-rparison using the s ize  distribu- 

t ions  derived from t h e  observations of Veinberg. 

According t o  the be l t  model, t he  color of the  zodiacal l i g h t  should 

appear as shown in f igure  14, 

s l igh t ly  bluer than the average measured by Tanabe. 

with Tanabets measurements i s  only va l id  a t  6 

brightness Keasured by Tanabe and Weinberg at  X 

A t  8 

by a color  Yatrix, 

brightness a t  A = 4300A (top), h = 5300A (middle) and X = 6000~ (bottom) : 

Note t h a t  it i s  bluish at  all elongations, 

However, a comparison 

= 300 where the  absolute 

= 53001 is  the  same. 

= 30' the co lo r  as predicted from the  be l t  model can be represented 

:(30°), the clerients of Tdiich reprezent t h e  r e l a t ive  
0 0 0 
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Figure 14. Color of the Zodiacal zight as Predicted from the Belt Model (as derived from 
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Tanabets measurements a t  G = 30' can be represented by three such 

matrices depending upon whether one considers the naxirnum or minimum 

1.45 
11.00 I 
Io155 I 
L -I 

Tanabe e E 300 

Max. Blue Average Min. Blue 

measuredvalues possible within the constraints of h i s  experimental error. 

At 6 Ir 45' the  color matrix predicted from the  b e l t  model is: 

1.16 
Q(4S0> predicted from Weinberg 

Kaqyaginals measurements over the in te rva l  40' < e < SOo give: 

Max. Blue Average Min. Blue 

Thus, t h e  be l t  model as  derived f r o n  !lein'oergls observ&ions is  

compatible with the color measurements of both Tanabe and Karyagina and 

we must tentat ively accept the poss ib i l i ty  t h a t  the zodiacal l i g h t  i s  

dominated by submicron size particles.  The r e a l  tes t  w i l l  occur when the 

polarization i s  measured a t  three wavelengths over a wide range of elonga- 

t ions,  

m = 1.5, the polarization a t  X = 

If the polarization a t  A = 4300i turns  out to  be posit ive f o r  

average refract ive index of the par t ic les  must be m < 1.5 o r  the par t ic les  

must be non-spherical. 

If the d i e l ec t r i c  particl-es have re f rac t ive  index greater  than 

h300i- should be negative f o r  e > so', 

8 <.130°, the 
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5, NONS VHKRlCAI, i- '3TiZiJ3S 

The foregoing ,analysis i s  based on the assumption tha t  the  inter-  

planetary dus t  par t ic les  are spherical. 

natural  processes such as collision, grinding, explosion, thermal s t ress ,  

But  par t ic les  formed through 

nucleation-condensation and coagulation a re  rarely spherical. 

there  is some question regarding the accuracy of the  deduced s i z e  d i s t r i -  

Consequently, 

butions, rad ia l  distributions,  absolute number density and re f rac t ive  index 

of t h e  jllterplanetary dust as derived from the  Belt model. Since the 

mathematical d i f f i cu l t i e s  involved i n  solving Maxwell's equations f o r  

nonspherical pa r t i c l e s  are enormous, it is  eas ie r  t o  examine t h e  question 

by comparison with laboratory experiments, 

One approach i s  t o  measure the  scat ter ing from single, nonspherical 

p a r t i c l e s  and compare the r e su l t s  with calculations from the  Mie theory. 

Greenberg e t  al, (1961) and GieselSiedentopf (1962a) have approached the 

problem i n  this manner using microwave analog techniques, 

O t t e w i l l  (1963) used optical  techniques. 

Nqper and 

Unfortunately, an enormous number 

of measurements f o r  various sizes, refract ive indices, shapes, and orienta- 

t i ons  are required before we can apply single pa r t i c l e  experiments t o  t h e  

general problem of analyzing t h e  zodiacal l igh t ,  

Another approach i s  t o  measure the sca t te r ing  from ensembles con- 

taining randomly oriented, polydisperse par t ic les .  

used by Richter (1956, 1962, 1966), Hodkinson (1963) and others (Donn and 

Powell, 1962; Powell e t  a le ;  1966), by one of two methods. 

This approach has been 
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Thz first methnd is t c !  rs i~me +,hat each nonsghericai p m t i c i e  in tile 

measured, laboratory s ize  distribution can be characterized by i t s  volume, 

i t s  longest dimension, o r  some combination of geometric parameters. The 

scat ter ing from spheres with similar dimensions i s  then calculated and 

compared t o  t h e  measured scattering. 

method to compare Richterts data  with t h e  H e  theory. 

(1963) used t h e  same technique, 

scat ter ing diagrams f o r  nonspheres and spheres respectively are unpredic- 

table. 

s c a t t e r  differently than spheres, They only indicate tha t  spheres and 

nonspheres cannot be compared on the bas i s  of a l inear  relationship between 

t h e i r  respective geometric properties. 

L i t t l e  e t  al. (1965) used this 

Napper and Ottewill 

The discrepancies i n  the resul t ing 

These discrepancies do not indicate  t h a t  nonspherical pa r t i c l e s  

The s ingle  pa r t i c l e  measurements show tha t  it i s  probably impossible 

t o  f ind  a s ingle  sphere of any s i ze  and refract ive index which sca t t e r s  l i k e  

a s&le nonsphere of given s i z e  and orientation. 

the angular and spectral  distribution of the  scat tered irradiance and 

polarization, each of which corresponds t o  the stirnixlation arid interact ion 

of m a n y  high order multipoles, is much too  sensi t ive t o  asymmetries i n  the 

boundarg conditions (Van de Hulst, 1957), 

The resonant peaks i n  

On the other hand, t he  scat ter ing from an ensemble containing many 

nonspheres with d i f fe ren t  alignments and s i zes  m a y  average out i n  such a 

way t ha t  it compares almost exactly with t h e  sca t te r ing  from some other  

s i ze  d is t r ibu t ion  of spheres, 

I~ovel l  e t  ale 

This has been shown f o r  cubes by Donn and 

I n  t h e i r  experiments, the scatter5ng was measured from v&i- 
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i n  these distributions were submicron i n  size.  An equivalent s i ze  ciisiri- 

b u t i o n  o f  spherical par t ic les  r ~ a s  then determined by inverting t h e  scatter-  

i n g  equations according t o  the Idie theory. 

t o  f i n d  an equivalent s i ze  distribution of spheres which matched the  angular 

d i s t r i b u t i o n  of the scattered irradiance and polasization a t  one wavelength. 

The equivalent s i ze  distribution of spheres was, i n  gmeral ,  d i f ferent  from 

the measured size dis t r ibut ion of nonspheres, 

were limited t o  only a few s ize  distributions and pa r t i c l e  

conclusions are interest ing : 

I n  peneral, it tras rather  easy 

Although these experiments 

shapes, the 

a. Large volume shapes such as  cubes scatter l i k e  spheres ( f igure 15). 

The equivalent sphere s i z e  distributions derived by inverting the measured 

angular irradiance and polarization a t  two wavelengths are nearly identical ,  

thus demonstrating t h a t  both the  angular and wavelength dependence of large 

volume par t ic les  are similar t o  spheres. Furthermore, t h e  equivalent sphere 

s ize  dis t r ibut ions are very close t o  t he  actual, measured s i z e  dis t r ibut ions 

of cubes. (On the  averee,  a cube sca t t e r s  l i k e  a sphere with diameter such 

t h a t  the  sphere j u s t  encloses the cube.> 

b. On t h e  other hand, s m a l l  volume shapes such as needles and four- 

l ings  (figure 16) exhibit s ing le  color scat ter ing diagrams l i k e  spheres, b u t  

the equivalent sphere s i z e  dis t r ibut ion m a y  differ markedly from the actual  

s i ze  dis t r ibut ion (fm 16 and 17). 

spheres but  $here i s  no l inear  relationship, 

The fourlings sca t t e r  l i k e  smaller 

c, Although large volune par t ic les  exhibit  the same wavelength de- 

pendence as spheres, small volurre pa r t i c l e s  do not; i,e,, a s ize  d is t r ibu-  

t ion  of spheres which i s  equivalent t o  fourlings a t  one wavelength is not 
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equivalent a t  another (figures 16 and 17). 

may look l i k e  smaller spheres insofar as s ingle  color measurements are 

Thus, small volume pa r t i c l e s  

conccrr,cd but L\e ; ;~; .~lcc,nt~ dqccdcccc  ~ ~ f i - 7 1  L l U U L Y  rJ nnf L A " "  b e  c=nsistent >liih fhe 9 

NLe theory. 

pa r t i c l e s  is  as follows: first, determine the s ize  d is t r ibu t ion  of spheres 

which matches the  angular character of t h e  scat tered irradiance and polari-  

zation as measured a t  wavelength, h 

the  equivalent size d is t r ibu t ion  by \/I2. 

In t h i s  regard, the  opt ical  t e s t  f o r  highly nonspherical 

Increase the s i z e  of a l l  spheres i n  1' 
Cawpare t h e  resul t ing scattering 

diagram with angular measurementsat .A2. 

par t i c l e s  a r e  spheres, cubes, octahedra, etc, 

ancies, especially i n  the r a t i o  of fomardcto-backard scattering, t h e  

pa r t i c l e s  a re  probably needle-like, 

applies t o  broad size dis t r ibut ion of randomly oriented par t ic les ,  

If the  two compare favorably, t he  

If there  are la rge  discrep- 

We emphasize again t h a t  this t e s t  only 

The very small s i ze  of the pa r t i c l e s  derived from the B e l t  model 

could be due t o  t he  f a c t  t ha t  the pa r t i c l e s  are large but needle-like, 

TP CA +ha r . n * . n l  4 - 4  nn nmaQo! ivn  amrri~rnnnt.e w n n l  d hp iq-pr"nPi at.o herallne 
r----- - ------ LL U V ,  U b A b  UUUQI &U.A&~V.LYII yzvuuu-v U ~ C U V L - & . Y Y  --.--- 

the  equivalent r a t i o  of scattering cross-section t o  mass is  unknown for 

such pa r t i c l e  shapes. 

the  observed color dependence would be incompatible with the Mie theory, 

Unfortunately, there are not suff ic ient  data concerning t h e  color  of the 

zodiacal l i g h t  and the  wavelength dependence of t he  polarization t o  t es t  

f o r  needle-like par t ic les .  

the idea  t h a t  most of the par t ic les  are l a rge  volume types: 

On the other hand, if t h e  pa r t i c l e s  are needle l ike ,  

Hovever, t h e  available da t a  are compztible with 

spheres, cubes, 
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f a t  ell iposoids and octahedra. 

are not  needle-like and, therefore, t ha t  t h e  Mie theory i s  applicable. 

Our t en t a t ive  conclusion is  tha t  t h e  par t ic les  
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6. CUNQUS iuiG 

The general arguments presented are compatible with the following 

conclusions: 

a, A l l  observations indicate tha t  t he  Zodiacal l i g h t  phenomenon i s  

due t o  scat ter ing from submicron par t ic les  with r a d i i  i n  the range 0,08 t o  

1.5 micron, 

b, The number density of par t ic les  i n  each s i ze  range i s  approxi- 

mate- constant throughout tbe ec l ip t i c  i n  the  region extending from 

Venus t o  M a r 8 .  

c, The differences i n  the observations can be explained by minor 

changes i n  the  s ize  d is t r ibu t ion  and composition of t he  par t ic les  i n  each 

or all of the  be l t s  between Venus and Earth, Earth and Mars, and especially 

between Mercury and Venus. 

d. All observations can be explained by the presence of a dominant 

f rac t ion  of d i e l ec t r i c  pa r t i c l e s  (1.8 c m c 1.4) i n  the regions between 

Venus and N a r s ,  

e, There i s  evidence tha t  some i ron  pa r t i c l e s  exist i n  t h e  regions 

between Mercury and Earth but  not beyond Earth, The iron par t i c l e s  tend 

t o  be la rger  ( r a d i i  between 0.08 and 1.5 microns) than the d ie lec t r ics  

(radii less than 0.3 microns) and the  number density of iron pazt ic les  

tends t o  be less than the  number density of d ie lec t r ics  by a f ac to r  of 100. 

f. There i s  evidence t h a t  t h e  planets have some effect  on the  s i z e  

dis t r ibut ion of the dus t  near then. 

explained without assuming t h a t  Venus sweeps o u t  many of t h e  pa r t i c l e s  near 

its orbit. More interestikg, perhaps, is the fact that an exact f i t  t o  

Behr and Siedentopf's data cannot be 



IJeinbergIs data requires a s l igh t ly  different size d i s t r i b u t i o n  o€ par t ic les  

near t he  Earth's o r b i t  than i n  the regions o f  space in t e r io r  and exter ior  

t o  Earth. 

g. In general concerning the slope: number density vs pa r t i c l e  s i z e  

i s  steeper than previously expected. 

h. The t o t a l  m a s s  of dust required t o  explain the  zodiacal l i g h t  

observations i s  i n  t h e  range 1Oo2L t o  grams per  CC. 

i, The number density of par t ic les  i n  the  region beyond Mars is  not 

suf f ic ien t  t o  affect t he  character of the  zodiacal light. 

j, Until  more accurate three-color observations are made, there i s  

no reason t o  assume highly nonspherical pa r t i c l e  shapes. 

f a t  e l l ipsoids  and octahedra all sca t te r  i n  the  same manner. 

pressure l i m i t  f o r  such shapes should be estimated more accurately (research 

i n  progress ). 

Spheres, cubes, 

The rad ia t ion  

k. The observations analyzed can be explained without any assumptions 

concerning the number of  electrons i n  the  region beyond IIercurj, 

t ron number density as derived from analysis of continuum observations is  

arbitrarg. 

The elec- 

1, Further analysis of the presently available zodiacal l i g h t  obser- 

vations w i l l  not y ie ld  unique results.  

interplanetasy dust ensemble can only be derived f ron  three-color, mono- 

chromatic rceasurements of the brightness and polarization at a l l  elongations; 

250 c 5 1600, Ileasurements i n  the  b?-ue are  lnost important. fionitoring of 

the three-color brightness and polarization a t  elongations: 

aver a p-eriod of several months would be valuable. 

A unique and re l iab le  model of t h e  

2 5 O  9 8 

Simultaneous three-color 
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would be vexy valuable. 

m. There i s  no reason t o  compnre the results from di rec t  inpact 

measurements t o  deductions from zodiacal light observations ir, the  hope of 

determining t h e  nature of the near-elrth ensemble. The zodiacal l i gh t  is 

due t o  very small par t ic les ,  

swamped by l i g h t  from smaller par t ic les ,  

sens i t ive  to par t i c l e s  larger  than 1 micron (depending on velocity). 

Light  from par t ic les  larger than 1.1~ is 

Direct impact devices are  only 

no Geisels analysis (1963) of Blackwell and Inghamls observations 

using submicron par t ic les  i s  not j u s t  an academic exercise as claimed by 

Elsasser (1965). 

consistant manner, 

Only submicron pa r t i c l e s  f i t  a l l  t he  observations i n  a 

0.  Obviously, someone should perform a more de ta i led  analysis of  

effects which counteract radiation pressure. 
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